
Abstract. A global survey of the correlation factor en-
ergy functionals and its application to atomic and
molecular properties is made. Its performances are
compared with those of the density functional theory
(DFT) correlation energy functionals, and some inter-
esting conclusions from previous publications are
reinforced here; namely, after removing the one-Slater-
determinant hypothesis from the Kohn–Sham method,
all DFT correlation functionals are able to provide
reasonable results in any circumstance, with an addi-
tional restriction, for systems having a quasi-degenerate
wave function, the DFT correlation functionals must
depend explicitly on the on-top density.
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1 Introduction

In this article, an overview of the application to atoms
and molecules of two type of correlation energy
functionals is made. One class is connected with the
density functional theory (DFT); the other is obtained
by factorization of the wave function or the two-body
density matrix. The latter are the correlation factor (CF)
methods also called two-body density (TBD) methods,
to emphasize the difference with the DFT functionals,
which are associated to the electronic density.

During the last few years, the impact of DFT on the
quantum chemistry community has increased consider-
ably, so nowadays the application of DFT to solve
problems regarding reactivity as well as atomic and
molecular structure is routine. Most of the DFT appli-
cations fall within the Kohn–Sham (KS) method, which
has a practical implementation very similar to Hartree–
Fock (HF) theory, although they have deep conceptual

differences. With the aim of easing the following dis-
cussion, we will illustrate some key points.

HF theory consists of obtaining the Slater determi-
nant which optimizes the expectation value of the elec-
tronic Hamiltonian:

EHF ¼ hDjĤH jDi ; ð1Þ
where D is a normalized Slater determinant:

D ¼ ðn!Þ�1=2ju1ð1Þ � � �unðnÞj ; ð2Þ
with uj being the jth spin-orbital and n the number of
electrons.

The Born–Oppenheimer nonrelativistic electron
Hamiltonian is, in atomic units,

ĤH ¼ �
Xn

j¼1

Dj

2
�
Xm

a¼1

Xn

j¼1

Za

jrj � Raj
þ
Xn

j>i¼1

1

jrj � rij
; ð3Þ

where m is the number of nuclei and Za their corre-
sponding charges.

In the HF theory, the optimum Slater determinant is
obtained by iterating on the eigenvalue equations:

F kj/ji ¼ ejj/ji ; ð4Þ
with

F k ¼ t þ vþ gk ; ð5Þ
where

t ¼ �D
2
; ð6Þ

v ¼ �
Xm

a¼1

Za

jr� Raj
; ð7Þ

and

gk ¼ akJk � bkKk ; ð8Þ
with

Jk ¼
X

j2k

Z
dr0
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and

Kk ¼
X

j2k

Z
dr0

/�j ðr0ÞP ðr; r0Þ/jðr0Þ
jr� r0j dr;r0 ; ð10Þ

where P ðr; r0Þ is the exchange operator between r and r0

coordinates and r and r0 are the spin indexes.
In the previous equations k runs over the different

groups of orbitals.
The values of the ak and bk coefficients define the level

into the HF theory (restricted (RHF), restricted open-
shell (ROHF), unrestricted (UHF)).

We highlight the following key points into HF theory:

– It is a theory that, without further restrictions, gives
an upper bound to the energy of the lowest state
within each symmetry.

– This theory takes into account the Pauli principle,
through the form selected for the wave function
(Eq. 2).

– HF equations are nonlocal ones, owing to the
exchange operator in Eq. (10).

– RHF theory is inadequate to study states that require
more than one Slater determinant to correctly
describe their wave function.

– HF theory is usually a good reference wave function
to build better approximations to the exact wave
function of a molecule.

The KS method supposes the existence of a Slater
determinant built from spin-orbitals giving the exact
density

qðrÞ ¼
Xn

j

uKS
j

���
���
2

: ð11Þ

The KS spin-orbitals fulfill the eigenvalue equations:

ðt þ vsÞ/KS
j ¼ ej/

KS
j ; ð12Þ

with

vs ¼ vþ ve þ vxc ; ð13Þ
where t and v (kinetic and external potential operators
respectively) are defined by Eqs. (6) and (7). ve is the
repulsive electron-electron potential, similar to Eq. (9)
but defined by the exact–density:

ve ¼
Z

dr0
qðr0Þ
jr� r0j : ð14Þ

It is, as in Eq. (9), a local potential, but the difference is
that this represents the exact Coulomb repulsion
potential. The vxc potential of Eq. (13) is the main
difference from HF theory. The expression for this
potential is unknown a priori, but it must incorporate all
exchange and correlation effects. There are a lot of
descriptions and discussions of KS theory [1], although
there are some key points to be underlined:

– As in HF theory, KS is a method for the ground state
of each symmetry.

– We could calculate the exact energy of a system, if we
knew the exact functional for the energy, through the
density obtained with the KS orbitals.

– The expression for the exchange–correlation potential
of Eq. (13) can be obtained as the functional deriv-
ative of the exact exchange-correlation energy
(Exc½q�):

vxc½q� ¼
dExc½q�

dq
: ð15Þ

However, an important limitation of the KS method is
that the exact expression of Exc½q� is not known.

Usually the KS theory is assumed to be a local the-
ory, having an effective local potential, although strictly
this may not be so [2]. In fact, a lot of KS applications
use a nonlocal effective potential, for example, when the
exchange used includes the HF exchange, as in the
hybrid exchange–correlation functionals.

In the next section, the characteristics of correlation
functionals deduced from the CF approach will be ex-
posed, emphasizing their approximations and limita-
tions.

We will afterwards make the analysis of their per-
formance on a wide variety of topics, either in a post-
self-consistent-field (SCF) procedure, or in a SCF one.
The behavior of these functionals used in post-SCF
calculations is shown in Sect. 3 through a large variety
of examples, comparing them with density functional
results, so we begin with a discussion about their
results on atomic and molecular properties, reactivity
applications and excited-state calculations. SCF cor-
related calculations are dealt with in Sect. 4, and
finally in Sect. 5, we discuss a method to solve
the size-consistency problem that appears in some of
the correlation energy functionals studied. Through
these sections, several fundamental questions related to
KS theory are discussed, such as the the use of a
single-determinant wave function to obtain the exact
density.

The last section is devoted to a global discussion
about the most relevant results shown in this paper.

2 The CF approach

The paper by Colle and Salvetti (CS) [3] pioneered
the systematic application of the CF approach to the
calculation of the correlation energy. Since then, the
expressions of CS have been used with success in a
number of systems. One of the most popular and
widespread used functionals within DFT, the Lee, Yang
and Parr (LYP) functional [4] is a simplification of the
CS equation when the two-body density matrix is that of
a Slater determinant, leading to an expression which
only depends on the charge density. The more than 7000
citations that either the functional or the model has
received since it was published show the interest that it
has created in the scientific community.

The key points of the CS model are are as follows.
The wave function is written within the CF approach

[5, 6, 7] and for the correlated system is approximated in
Ref. [3] as

Wðx1; . . . ; xnÞ ¼ W0ðx1; . . . ; xnÞPn
i<j½1� uðri; rjÞ� ; ð16Þ
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where W0ðx1; . . . ; xnÞ is a reference wave function that in
the first paper by CS [3] was chosen as a HF one,
although in later papers it was extended to more
elaborate multiconfigurational (MC) wave functions [8,
9, 10]. xi represents both the spatial, ri, and spin, si,
coordinates of electron i, while the CF, u, is given by

uðr1; r2Þ ¼ expð�b2r2Þ½1� UðR12Þð1þ r=2Þ� ; ð17Þ

with R12 ¼ ðr1 þ r2Þ=2 and r ¼ jr1 � r2j. UðRÞ plays an
important role, since it governs the behavior of the
model wave function at the correlation cusp (r ¼ 0). b
measures the inverse of the correlation radius, and
according with Wigner’s model it is

b ¼ qq1=3 ; ð18Þ

where q is a parameter optimized in Ref. [3] to the value
of 2.29.

The mean value theorem is invoked to obtain an
approximation to the two-body density. UðR12Þ is
approximated as

UCSðRÞ ¼
bp1=2

1þ bp1=2
: ð19Þ

The correlation energy functional is developed
around the point r ¼ 0 in a Taylor series and truncated
to second order. Further integration on r leads to a
functional of the two-body density dependent on the R
coordinates only. Finally, the resulting equation (Eq. 9
of Ref. [3]) is approximated by fitting its integrand by an
approximate function parametrically adjusted (Eq. 19 of
Ref. [3]).

Several deficiencies of the CS energy functional have
been criticized [11, 12, 13, 14], all them related to the
approximations taken in developing the correlation
energy functional from Eq. (19) of Ref. [3]:

– The sum rule or equivalently
Z

qchðrÞ dr ¼ 0 ; ð20Þ

where qchðrÞ is the correlation hole, is not satisfied.

– The pair correlation energy density and the correla-
tion potential are not well behaved [11, 12].

– The electron-gas correlation energy is not reproduced
by the CS functional [13].

– The N -representability is lost in the CS procedure
[14].

The Equation (20) for the coulomb hole density is not
satisfied by the CS functional because Eq. (19) is used to
write UðRÞ, and Eq. (19) follows from integration of
Z

uðR; rÞ dr ¼ 0; ð21Þ

which is not related to any known physical constraint.
The deficiencies of the pair energy density are related

to Eq. (19) of Ref. [3] and its parameterization. This
equation is used instead Eq. (9) of Ref. [3] to avoid the
divergences shown by it. A deeper question is the N -
representability lost in the CS formulation because it is

related to the way used in Ref. [3] to go from the N -body
problem to the two-body one.

A procedure in the framework of the CF approach,
different to that of CS, was proposed in Refs. [14, 15]
and was aimed at solving the most important drawbacks
of this model which were commented on earlier. Instead
of starting from a wave function like that of Eq. (16), the
exact second-order density matrix is taken as

C2ðr1; r2; r01; r02Þ ¼ C0
2ðr1; r2; r01; r02Þ½1þ F ðr1; r2; r01; r02Þ� ;

ð22Þ
where C0

2ðr1; r2; r01; r02Þ is the spinless second-order density
matrix corresponding to a model wave function, while
F ðr1; r2; r01; r02Þ is a CF. The procedure that follows is
described in detail in Ref. [14], and here we will only
outline its most important issues.

We restrict C2ðr1; r2; r01; r02Þ to be Hermitian, anti-
symmetric with respect to the exchange of the coordi-
nates of two particles, and positive semidefinite:

C2ðr1; r2; r01; r02Þ ¼ C�2ðr1; r2; r01; r02Þ ð23Þ

C2ðr1; r2; r01; r02Þ ¼ �C2ðr2; r1; r01; r02Þ

¼ C2ðr2; r1; r02; r01Þ ð24Þ

C2ðr1; r2; r01; r02Þ � 0 : ð25Þ
These three are necessary, (but not sufficient), conditions
for C2 to be N -representable [16, 17]. An expression for
the CF consistent with these requirements and close to
the CS procedure is given by

F ðr1; r2; r01; r02Þ ¼ Kðr1; r2ÞK�ðr01; r02Þ
� Kðr1; r2Þ � K�ðr01; r02Þ

; ð26Þ

with Kðr1; r2Þ being a function that does not depend on
the angular components of r12,

Kðr1; r2Þ ¼ KðR; rÞ; ð27Þ
and chosen as

KðR; rÞ ¼ exp½�bðRÞr�n½1� nðR; rÞ� ; ð28Þ
where the value n ¼ 2 which also appears in the CS
formulation allows the analytical integration in the
variable r. bðRÞ is related to the exclusion radius of
Wigner in the same manner as in the CS work. The
nðR; rÞ function will be defined later.

A critical point in the CS model is that the Taylor
expansion of C0

2ðR; rÞ around r ¼ 0 is taken up to second
order, which leads to undesired divergences in the cor-
relation energy density. In order to avoid this problem a
Gaussian summation was used in Ref. [14] to approxi-
mate C0

2ðR; rÞ:

C0
2ðR; rÞ ¼ C0

2ðRÞPðR; rÞ exp½�r2=cðRÞ�; ð29Þ
where C0

2ðRÞ ¼ C0
2ðR; 0Þ and P ðR; rÞ is a polynomial in r

whose coefficients depend on cðRÞ. Both cðRÞ and these
coefficients will be fixed by means of some boundary
conditions commented on later. Gaussian forms have
been used previously to approximate the diagonal
elements of density matrices with results that, in general,
may be considered good [15, 18, 19]. Equation (29) was
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justified extensively in Ref. [18] where C0
2ðRÞ was chosen

to be that of one Slater determinant and PðR; rÞ was
taken to be constant and equal to 1. In this case
Cdet
2 ðR; rÞ takes the following form:

Cdet
2 ðR; rÞ ¼

1

2
q Rþ r

2

� �
q R� r

2

� �

� 1

2

X

r

qrr
1 Rþ r

2
;R� r

2

� �h

� qrr
1 R� r

2
;Rþ r

2

� �i
; ð30Þ

where r is the spin index, and q1 is the first-order density
matrix without spin.

If the orbitals that build q and q1 are developed in a
Taylor series the last equation may be written as

Cdet
2 ðR; rÞ ¼

X

k

g2kðRÞr2k : ð31Þ

Therefore, a Gaussian form like that given by Eq. (29)
with P ðR; rÞ ¼ 1 is a good approximation to Eq. (31).
The polynomial PðR; rÞ was introduced in Ref. [14] to
improve the model. On the other hand, the cusp
condition on C2ðR; rÞ,

@C2ðR; rÞ
@r

�����
r¼0

¼ C2ðR; 0Þ ; ð32Þ

is used to model F ðR; rÞ.
Taking the following form for nðR; rÞ

nðR; rÞ ¼ UðRÞf ðR; rÞ ð33Þ
Eq. (32) transforms as

d

dr
f ðR; rÞ

�����
r¼0

¼ 1� a1ðRÞ
2

f ðR; 0Þ ; ð34Þ

where a1ðRÞ is the coefficient of order 1 in the
polynomial P ðR; rÞ. We note in the passing that if a1

were zero we would end up with a condition for f ðR; rÞ
consistent with the CS form, c.f. Eq. (17). Hence,
Eq. (34) suggests two possible ways to define f ðR; rÞ;
namely,

f ðR; rÞ ¼ 1þ 1� a1ðRÞ
2

r þ b2r2 ð35Þ

or

f ðR; rÞ ¼ expð1� a1ðRÞÞr=2 ; ð36Þ
that would allow analytic integration in r.

The expression for UðRÞ is obtained from
Z

C0
2ðRÞ½KðR; rÞ

2 � 2 � KðR; rÞ� dR ¼ 0; ð37Þ

which assumes that qðrÞ ¼ q0ðrÞ. Finally, cðRÞ, which
enters in the Gaussian sum of Eq. (29), is obtained from
the reducibility condition for C0

2ðR; rÞ to x0ðRÞ (the
extracule density of the reference system):

x0ðRÞ ¼ 8p
N � 1

Z 1

0

r2C0
2ðR; rÞ dr : ð38Þ

By using the set of equations (22–38) a set of cor-
relation functionals depending on C0

2ðRÞ was obtained
in Refs. [14, 15]. The parameters entering through
Eq. (35) or Eq. (36) together with q of Eq. (18) and the
coefficients of PðR; rÞ in Eq. (29) were obtained by fit-
ting the exact correlation energies of the first-row
atoms. From the set of correlation functionals of
Refs. [14, 15] the Moscardó–San Fabián (MSF) func-
tional [15] and the Moscardó–Pérez-Jiménez at level 5
(MPJ) of Ref. [14] were chosen. The first functional is
obtained by assuming that PðR; rÞ of Eq. (29) is a
constant equal to 1. And the MPJ functional uses for
P ðR; rÞ a polynomial of degree 2 and Eq. (35) to define
f ðR; rÞ.

In the next sections we discuss the results achieved by
some of the correlation energy functionals. They are also
compared with other correlation energy functionals
presented in the literature. The comparison will be useful
to overview the overall performance of functionals de-
rived in the formalism of the CF approach, as well as to
shed light on topics related to some known deficiencies
found in the KS implementation of DFT.

3 Post-SCF calculations

In this section we show the capabilities of CS [3], MSF
[15] and MPJ [14] correlation energy functionals applied
in a post-SCF procedure. The total energy is evaluated
as [20–24].

Ef
A½WA� ¼ EA½WA� þ Ef

c;A½WA� ; ð39Þ

where WA indicates the class of wave function used
(HF or MC) in the SCF evaluation of EA, while f
denotes the functional used to calculate the correlation
energy, Ec.

Several authors have successfully applied this ap-
proach to approximate, in a post-SCF fashion, KS re-
sults in atoms and small molecules. These post-SCF–KS
calculations can be justified because the contribution of
the correlation potential, v̂vc, to the full effective KS
Hamiltonian, Eq. (12), may be considered to be a small
perturbation, (we will usually employ exact HF-type
exchange). Under the assumption that the v̂vc component
of v̂vxc is small compared with the rest of terms appearing
in Eq. (13) we may take

qKS
r ðrÞ ’ qHF

r ðrÞ ; ð40Þ
and hence

EKS½qKS
r � ’ EKS½qHF

r � ¼ EHF þ Ec½qHF
r � : ð41Þ

In the case of MC calculations, the use of the post-
SCF scheme by Eq. (39) may be justified more easily
from the perspective of the CF approach. Recall that
since

C2ðr1; r2Þ ¼ C0
2ðr1; r2Þ þ DC0

2ðr1; r2Þ ð42Þ
the total energy may be partitioned as

E ¼ E½C0
2� þ E½DC0

2� ; ð43Þ
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where E½DC0
2� defines the correlation energy of the

partition. If the two members on the right-hand side of
Eq. (43) are included in the SCF calculation, both C0

2
and DC0

2 must be evaluated simultaneously. Neverthe-
less, as shown in Sect. 4, the contribution of DC0

2 to the
SCF equations is quite small, and it is also a good
approximation to take C0

2 as that yielded by the the SCF
evaluation of only E½C0

2�.

3.1 Atomic properties

The first ionization potentials (IP) and electron affinities
(EA) from post-HF and post-configuration interaction
(CI) wave functions are shown and compared with those
yielded by other well-known correlation energy func-
tionals. We also discuss the accuracy of several sets of
‘‘exact’’ correlation energies that may be used as a
reference to test the performance of correlation energy
functionals. Finally, we comment on using several Slater
determinants to calculate the total energy of some
closed-shell isoelectronic series.

The exact nonrelativistic total energy, for each cor-
relation energy functional, is approximated as

Ef ðZ;NÞ ¼ EHFðZ;NÞ þ Ef
c ðZ;NÞ ; ð44Þ

where f is the correlation energy functional employed in
the calculation of the correlation energy, with N and Z
being the number of electrons and the atomic number,
respectively, of the atom, while EHF is the energy of the
HF wave function. The IP and EA are calculated using
their definitions:

IP f ðZÞ ¼ Ef ðZ;N � 1Þ � Ef ðZ;NÞ ; ð45Þ

EAf ðZÞ ¼ Ef ðZ;NÞ � Ef ðZ;N þ 1Þ : ð46Þ
The results taken from Ref. [25] are for the atomic

natural orbital–triple zeta (ANO-TZ) basis set [26, 27].
Although a high-quality basis set is not required to
calculate Ec [28], it becomes essential to calculate EHF,
which is largely dependent on the basis set used.

The IP and EA values for several correlation energy
functionals are shown in Tables 1 and 2. We have tested
the CS, MSF and MPJ functionals as representative of
CF ones, as well as some popular DFT correlation
energy functionals, namely:

– The Vosko, Wilk and Nussair (VWN) [29] functional:
a local spin density (LSD) correlation energy func-
tional.

– The VWN functional with the self-interaction cor-
rection (SIC) of Ref. [20].

– The Perdew 86 [30] correlation energy functional,
which is a representative functional of the generalized
gradient approximation (GGA). We do not show the
results of the popular LYP [4] correlation energy
functional because this functional is a simplification
of the CS functional when the wave function is
approximated by a single Slater determinant. Hence,
although the parameterization of the LYP functional
is different to that of CS one, both functionals give
very similar results.

The exact nonrelativistic IP values of Table 1 are
taken from Davidson and coworkers [31, 32]. The exact
EA nonrelativistic values listed in Table 2 correspond to
the experimental values of Hotop and Lineberger [33]
modified with the relativistic corrections of Garcı́a de la
Vega [34]. These tables also give the relative average
errors of each functional calculated by the formula.

�f ðX Þ ¼ 100

n

Xn

Z

jX f ðZÞ � X eðZÞj
X eðZÞ ; ð47Þ

where X f ðZÞ is the value of the IP or EA for the atom of
atomic number Z calculated with the functional f and
X eðZÞ is the exact value of the IP or EA for the atom of
atomic number Z.

The relative average errors separate the functionals
into two groups: the LSD functionals on one side and
the LSD–SIC, GGA and CF ones on the other. As ex-
pected, the errors for the IP are lower than those for the
EA results. However, the fraction �f

�HF
is very similar for

the IP compared to that of the EA. This means that

Table 1. Ionization potentials (IP) (eV) obtained in a post-self-
consistent-field (SCF) procedure

Z Exacta UHF VWN VWN-SIC P86 CS MSF MPJ

2 24.59 23.45 25.72 25.04 24.70 24.58 24.53 24.59
3 5.39 5.34 5.78 5.39 5.54 5.55 5.67 5.66
4 9.32 8.04 9.43 8.99 9.09 8.90 9.04 8.95
5 8.30 8.04 9.02 8.43 8.67 8.53 8.55 8.56
6 11.26 10.80 11.84 11.18 11.52 11.36 11.27 11.31
7 14.53 13.90 14.97 14.26 14.68 14.48 14.31 14.37
8 13.62 12.02 13.97 13.31 13.47 13.24 13.58 13.69
9 17.42 15.65 17.53 16.82 17.05 16.85 17.09 17.21
10 21.56 19.71 21.54 20.77 21.07 20.88 21.03 21.15
11 5.14 0.11 5.43 5.04 5.17 5.25 5.16 5.22
12 7.65 6.61 7.84 7.42 7.56 7.42 7.56 7.52
13 5.99 5.61 6.40 5.89 6.24 5.94 5.98 6.03
14 8.15 7.64 8.50 7.95 8.35 8.04 8.03 8.10
15 10.49 9.91 10.83 10.23 10.68 10.36 10.30 10.39
16 10.36 9.24 10.83 10.27 10.54 10.27 10.57 10.68
17 12.97 11.76 13.36 12.75 13.08 12.80 13.05 13.18
18 15.76 14.56 16.15 15.50 15.88 15.58 15.78 15.93

� 7.32 3.86 2.04 1.91 1.91 1.49 1.68

aRefs. [31, 32]

Table 2. Electron affinities (EA) (eV) obtained in a post-SCF
procedure

Z Exacta UHF VWN VWN-SIC P86 CS MSF MPJ

3 0.62 )0.12 0.74 0.50 0.61 0.38 0.51 0.41
5 0.28 )0.31 0.37 )0.08 0.26 )0.01 0.02 0.03
6 1.27 0.45 1.25 0.71 1.12 0.85 0.78 0.81
8 1.47 )0.58 0.94 0.39 0.62 0.42 0.63 0.71
9 3.41 1.18 2.70 2.08 2.36 2.19 2.31 2.41
11 0.55 )0.11 0.70 0.46 0.58 0.37 0.52 0.47
13 0.45 0.01 0.56 0.18 0.51 0.20 0.26 0.31
14 1.40 0.85 1.53 1.06 1.46 1.12 1.14 1.20
15 0.76 )0.33 0.96 0.53 0.76 0.52 0.77 0.80
16 2.09 0.88 2.22 1.73 2.02 1.76 1.98 2.04
17 3.64 2.37 3.73 3.18 3.53 3.25 3.43 3.52

� 110.50 24.57 45.37 15.68 43.47 31.09 31.14

a Ref. [33]
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adding the correlation energy notably improves the EA
values.

3.1.1 Exact correlation energies

The calculated correlation energies were compared with
two sets of ‘‘exact’’ values. Both sets are obtained by
applying the expression

EcðZÞ ¼ AEðZÞ � ErelðZÞ � EHFðZÞ � ELambðZÞ ; ð48Þ
where AEðZÞ is either the sum of the IPs of the atom with
atomic number Z taken from Moore’s tables (we name
this set of correlation energies A), or from the experi-
mental energies given by Veillard and Clementi (named
set B). Erel and EHF are the relativistic and limit HF
energies, respectively, taken from Fraga and coworkers
[35, 36], while ELamb is the Lamb displacement, whose
calculation is discussed thoroughly in Refs. [14, 25]. The
values of the correlation energies of sets A and B were
taken from Ref. [25].

There is some uncertainty in the experimental deter-
mination of the innermost IP [31, 32] that gives an
inaccuracy of 0.1 hartree in the correlation energy of
second-row atoms. In the following we show that cor-
relation energy functionals may aid in the validation of
‘‘exact’’ correlation energy sets.

The average error when evaluating the correlation
energy by means of Eq. (44) with several correlation
energy functionals is plotted in Fig. 1. We represent
separately the average error with respect to the atoms of
the first row from that referred to those of the second
row for each set of exact values (named A and B) and
each functional. The curves corresponding to the atoms
of the first row are very similar, indicating the agreement
between the ‘‘exact’’ correlation energies from both sets.
We note in passing that while LSD and LSD–SIC
functionals provide large errors, those corresponding to
GGA and CF functionals are rather small. Regarding
the results of the second row, the curve referring to set A
is very different from that corresponding to set B of
‘‘exact’’ correlation energies. Unlike curve A, which
shows both large average errors and a large dispersion,

curve B approaches a straight line of zero slope with
small average errors. This result suggests that the
‘‘exact’’ correlation energies of set B are good approxi-
mations to the correct values.

3.1.2 Two- and four-isoelectronic series

The calculations of the correlation energy for the two-
and four-isoelectronic series shows some interesting
features. For the two-isoelectronic series one Slater
determinant built from the 1s orbital suffices to give a
correct description of the systems. For the four-electron
series, however, the interaction of the 2p orbitals with
the 2s orbital is more important, increasing with Z. As a
result, the 2p orbitals play an important role in the
approximate wave-function to be used to obtain the
correlation energy. With this fact in mind a CI wave
function containing configurations 1s22s2 and 1s22p2

q
(q ¼ x; y; z) was built, from which we calculated the
correlation energy using CS and MSF functionals. These
values, (together with the results using a RHF wave
function), are depicted in Fig. 2 and recover the correct
trend when compared with those obtained using a HF
wave function as a reference. It is the first example of the
role that the correct choice of the model of the wave
function used plays to calculate the correlation energy.

3.2 Molecular properties

3.2.1 Diatomic Molecules

In this section we briefly comment on the most relevant
results obtained when applying CF-type correlation
functionals to the post-SCF evaluation of properties in
diatomic molecules. We also compare these results with
those provided by DFT functionals.

The values of the spectroscopic constants Re equilib-
rium distance, vibrational frequency, xe, and dissocia-
tion energy, De, corresponding to the ground state of a
set of heterodiatomic and homodiatomic molecules built
from first-row atoms are reported in Table 3. Together
with the exact results, we list those obtained from UHF

Fig. 1. Average of absolute relative errors for several correlation
energy functionals Fig. 2. Correlation energy for the four-isoelectronic series. In a.u.
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calculations, Generalized valence bond perfect pair
(GVB-PP) [37, 38, 39] ones, and the corresponding post-
SCF calculations derived from these two after adding
the correlation energy (Eq. 39). Details about the basis
sets used and the SCF calculations may be found in
Ref. [40]. First of all, neither the UHF nor the GVB-PP
wave functions can describe correctly the ground state of
C2 and N2, and for this reason a minimal MC wave
function was used for these two molecules. Secondly, the
UHF results corresponding to the F2 molecule are not
shown because this potential-energy curve (PEC) is dis-
sociative. Third, the GVB-PP data corresponding to the

B2 molecule are not given since it is not possible to
correctly describe the valence electrons for it.

Regarding the post-UHF results we remark the fol-
lowing facts. As expected, adding the correlation always
improves on the UHF values of De. This improvement is
dramatic in some cases, such as in H2, LiH or BH;
however, deviations with respect to the exact values are
still large for FH and B2. For this type of wave function,
all the functionals yield similar results. The correlation
correction decreases the equilibrium distances and in-
creases the vibrational frequencies. This trend results in
a worsening of the correlated results since the UHF
equilibrium distances (frequencies) are already shorter
(larger) than the exact values. Pople [41] also reports a
decrease of about 0.02–0.04 au in the equilibrium dis-
tance for UHF/6-31G� calculations. The correlation ef-
fect on these properties can be understood from the
analysis performed in Ref. [40], where it was shown that
the following equation holds between the equilibrium
distance of the post-SCF correlated calculation, Rc

e, and
that of the original SCF one, Re:

1

Rc
e

� 1

Re
¼ �0c

lx2
eR2

e

; ð49Þ

while the following ones relate xc
e with xe: and De with

Dc
e:

xc
e ¼ xe

Re

Rc
e

� �
; ð50Þ

Dc
e ¼ De � D�c þ

�02c
2lx2

e

; ð51Þ

where l is the reduced mass, xc
e and Dc

e are the values of
the spectroscopic constants corresponding to the corre-
lated post-SCF calculation, and where

�0c ¼
dEcðRÞ
dR

�����
R¼Re

ð52Þ

and

D�c ¼ EcðReÞ � lim
R!1

EcðRÞ: ð53Þ

The trends mentioned are the result of �0c > 0 and
D�c < 0 in all the molecules analyzed.

Regarding to the post-GVB-PP calculations an
increase in the dissociation energies compared to the
original GVB-PP ones can be observed. On the other
hand, this increment is larger for CF functionals than
for DFT ones. This is due to the fact that DFT func-
tionals, when added to the GVB-PP energy, tend to
overestimate the energy of the quasi-dissociated mole-
cule. However, the values of De obtained from post-
GVB-PP calculations are better than those provided by
the GVB-PP ones regardless of the functional used. As
was also the case with the post-UHF calculations, the
post-GVB-PP equilibrium distances decrease while
the vibrational frequencies increase with respect to the
GVB-PP results. This can be justified in the same way as
done previously for the post-UHF calculations: see
Eqs. (49–53).

Table 3. Equilibrium distance, Re (au), dissociation energy, De (eV)
and bond vibrational frequency, xe (cm�1), calculated in a post-
SCF procedure

H2 LiH BH FH Li2 C2 N2 F2

Experimental
Re 1.401 3.015 2.336 1.733 5.051 2.347 2.073 2.679
De 4.75 2.52 3.58 6.12 1.14 6.36 9.91 1.66
xe 4400 1406 2368 4139 351 1855 2358 892

UHF
Re 1.390 3.038 2.314 1.693 5.538
De 3.62 1.47 2.65 4.09 0.20
xe 4581 1428 2470 4498 229

UHF + VWN
Re 1.377 3.002 2.293 1.685 4.914
De 4.95 2.60 3.66 5.14 0.84
xe 4655 1466 2530 4554 413

UHF + P86
Re 1.386 2.996 2.301 1.680 4.968
De 4.75 2.46 3.61 5.42 0.82
xe 4626 1471 2522 4609 393

UHF + CS
Re 1.382 2.973 2.285 1.684 4.891
De 4.64 2.38 3.53 5.16 0.75
xe 4626 1492 2548 4566 402

UHF + MSF
Re 1.380 3.000 2.290 1.684 4.941
De 4.54 2.47 3.67 5.25 0.76
xe 4647 1470 2541 4566 400

GVB-PP
Re 1.430 3.093 2.370 1.728 5.537 2.443 2.079 2.873
De 4.12 1.92 3.15 4.81 0.44 2.84 7.10 0.55
xe 4208 1301 2260 4132 273 1548 2384 543

GVB + VWN
Re 1.416 3.052 2.347 1.718 5.412 2.425 2.066 2.831
De 4.28 2.11 3.31 5.03 0.52 3.19 7.83 0.62
xe 4299 1347 2322 4194 293 1587 2439 577

GVB + P86
Re 1.424 3.043 2.354 1.710 5.377 2.413 2.067 2.700
De 4.48 2.24 3.53 5.58 0.65 3.67 8.13 1.11
xe 4274 1356 2322 4278 299 1624 2439 733

GVB + CS
Re 1.413 2.987 2.344 1.708 5.096 2.348 2.007 2.704
De 4.74 2.59 3.93 6.25 0.94 6.89 12.34 2.48
xe 4380 1452 2302 4325 361 1830 2783 809

GVB + MSF
Re 1.411 3.028 2.330 1.708 5.230 2.397 2.051 2.753
De 4.79 2.66 3.91 5.88 0.91 5.64 10.64 1.46
xe 4368 1406 2359 4306 337 1679 2547 757
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Finally, we stress the fact that the best values of Re,
xe and De are given by the post-SCF calculations using a
multideterminant wave function (GVB or MC). For this
type of calculation it is also evident that CS or MSF
functionals provide better results than those yielded by
DFT ones.

3.2.2 The double count of the correlation energy

A problem which happens when calculating the corre-
lation energy by means of correlation functionals is the
so-called double count of the correlation energy. If the
functional was well adapted to the wave function leading
to the ‘‘uncorrelated’’ energy, then this kind of problem
should not appear, and the correlation energy evaluated
with respect to any reference wave function should
automatically adjust its value. As a matter of example
consider the ground state of the He atom: if the
correlation functional was adapted to the wave function,
the functional should give a correlation energy of
�0.042 au when the reference wave function is a HF
one, while it should provide no correlation energy at all
if the reference wave function is a full CI one. However,
most of the correlation functionals give an excess of
correlation energy when the reference wave function
includes more than a single Slater determinant; this
excess of correlation energy is termed the double
count of correlation energy. The post-GVB-PP and
post-MC results discussed earlier obtained by using the
DFT functionals suffer from this deficiency. The CF
ones also suffer of the same deficiency, but to a lesser
extent. This fact explains the better values obtained with
the latter.

The effect of the wave function on the double count
of the correlation energy has been studied in post-SCF
calculations for a set of first row atoms and for PECs of
diatomic molecules (H2 and LiH) [42]. The reference
wave functions used were HF, GVB-PP and CI with
doubles (CID) and singles and doubles (CISD) with
different excitation windows. The results shown in Table
4 for H2 indicate that DFT functionals are not sensitive
to the class of wave function used. As the wave function
complexity increases the double count of the correlation
energy also increases. In contrast, the CF functionals
adequately modify the correlation energy they provide
depending on the reference wave function used. A con-
sequence is the quality of properties such as the fre-
quencies for vibrational excited states (see Table 9 of

Ref. [42]) for the post-SCF calculations compared with
the frequencies obtained by Kolos and Wolniewicz [43].

A procedure has been proposed to cure the double
count of the correlation energy in DFT functionals [44].
It consists of including the on-top two-body density
matrix, q2ðr; rÞ � q2ðrÞ, in the expression of the DFT
functional through

q ¼ q0a þ q0b ; ð54Þ

q0aðbÞ ¼ qaðbÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 2q2

2

r
; ð55Þ

where q and q2 are, respectively, the charge density and
the on-top density of the multi-determinant wave
function and q0a and q0b substitute the spin density
components qa and qb (see Ref. [44] for the justification
of these equations).

Equations (44) and (45) have also been used in the
calculation of exchange energies [45], but the results are
not as good as those obtained for the correlation, prob-
ably because the approximation that leads to them is not
as accurate for exchange as for correlation. The use of
Eqs. (54) and (55) in the post-GVB-PP and post-MC
calculation of PECs of diatomic molecules, reaction
energies and torsional barriers has proved to be an
excellent method to remove the double count of the
correlation energy [42]. As an example, the PEC corre-
sponding to the ground state of H2 evaluated in a
post-SCF fashion with different combinations of wave
functions and functionals is plotted in Fig. 3. The term
P86m used in Fig. 3 refers to the P86 functional evaluated
with the spin components given by Eqs. (54) and (55).

It is well known that a bad description of the disso-
ciation is provided by RHF theory, as well as that this
may be corrected if enough determinants are included in
the wave function. For example, in Fig. 3 we can see that
including the correlation energy does not modify sig-
nificantly the wrong tendency of the RHF calculation.
The correlation energy yielded by the CF functional
when added to the GVB-PP calculation seems to incor-
porate the dynamic correlation lacking, improving the
whole range of internuclear distances. When the P86
correlation energy is added to the GVB-PP the result is a
translation of the GVB-PP curve. Nevertheless, the
curve corresponding to the GVB-PPþ P86m calculation
recovers the correct shape of the GVB-PP þ CFPEC.
The slight difference between these two curves is due to

Table 4. Correlation energies
for the hydrogen molecule

a ESCFðH2Þ � 2EHFðHÞ

Method R = 1.401 au R = 10.0 au

HF CISD GVB HF CISD GVB

(1–2) (1–12) (1–2) (1–12)

SCF 0.0000 0.0015 0.0359 0.0184 )0.2357a )0.0233a 0.0000a 0.0000a

VWN 0.0492 0.0491 0.0493 0.0493 0.0395 0.0396 0.0429 0.0429
P86 0.0472 0.0471 0.0471 0.0471 0.0333 0.0334 0.0337 0.0337
B88 0.0358 0.0358 0.0363 0.0361 0.0244 0.0245 0.0272 0.0272
LYP 0.0382 0.0381 0.0381 0.0381 0.0264 0.0264 0.0271 0.0271
CS 0.0376 0.0363 0.0021 0.0227 0.0289 0.0000 0.0000 0.0000
MSF 0.0338 0.0330 0.0062 0.0246 0.0266 0.0000 0.0000 0.0000
Exp. 0.041 0.000
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the residual autocorrelation energy of P86 for the
hydrogen atom (�0.0024 au). It is specially remarkable
that this lowering in the double count is produced to the
correct extent along the whole PEC.

3.2.3 Beyond KS DFT

CF functionals may shed light on unsolved questions
related to the KS implementation of DFT. One of these
questions is the following: can the results obtained from
the KS method be considered as parallel to those
obtained from the HF method or, on the contrary, are
they markedly different because KS and HF are theories
of a totally different nature?

In the first case, KS results should reproduce the
essential characteristics of HF ones. In other words the
KS method should fail in the same cases where the HF
method does. It is a well-known fact that the RHF
method provides erroneous dissociative curves. On the
other hand, the UHF method may yield the correct
trend of the energy at dissociation distances but with
fragments having fractional charges (as an example, the
UHF solution corresponding to a dissociated Liþ2 cation
provides Li ions with þ1/2 net charge) and wave func-
tions that are not eigenfunctions of the ŜS2 operator.

These same behaviors have been found in restricted KS
and unrestricted KS calculations using exact exchange
and a lot of correlation energy functionals, and thus
seem to confirm the first hypothesis.

Regarding the second possibility, it has been argued
that the exact exchange–correlation functional evalu-
ated with the exact density must contain all the infor-
mation necessary to yield the exact value of the energy.
If one is consistent with this for an even number of
electrons, the exact density qexact should take the fol-
lowing form:

qexactðrÞ ¼
Xn

i¼1
2 � /KS�

i ðrÞ/KS
i ðrÞ ; ð56Þ

where /KS
i ðrÞ is a KS orbital solution of Eq. (12).

This closed-shell solution must be valid in the
whole range of interatomic distances for the PEC of a
diatomic molecule. The PEC for H2 is plotted in Fig. 4
(another example and the details of the calculations can
be seen in Ref. [46]). The points labeled KS½qexact�
correspond to KS exchange-only energies using exact
exchange (see Eq. 10) and the exact density, those
labeled KS½qexact� þ ELYP

c are obtained from the
former by adding the LYP correlation energy evaluated
also with the exact density, and those labeled
KS½qexact� þ ELYP

c þ End
c are calculated from the latter by

adding an estimate of the nondynamic correlation
energy following Mok et al. [47], namely

End
c ¼ ECASSCFðn;mÞ � EHF ; ð57Þ

where n and m indicate the corresponding excitation
window. The points whose label starts with RHF were
obtained in the same fashion as those just described, but
were evaluated self-consistently with the RHF orbitals
and density.

The conclusions that can be drawn from this figure
are clear. First of all, the use of either the HF density or
the exact density in exchange-only KS calculations has
almost no effect, apart from the slight increase of the
energy in the case where the exact density is employed,
which is in complete agreement with the variational
principle. Secondly, when the correlation energy is in-
cluded via a correlation energy functional, the PEC is
almost parallel to the noncorrelated one regardless of the
density (HF or exact) employed in the calculations.
However, once the non-dynamical contribution is con-
sidered in the way described earlier the results lie much
closer to those corresponding to the exact PEC. There-
fore, it seems that the problems regarding the KS
method have to do with the nondynamical correlation
contribution. It could be argued that the DFT correla-
tion energy functionals proposed in the literature are
designed to only account for the dynamic contribution
to correlation energy. If this were the case, the possibility
of including the nondynamical contribution in them still
remains. But Fig. 4 indicates that invoking such modi-
fication is unnecessary since DFT correlation energy
functionals are able to yield excellent results without
changing their expressions, but merely incorporating a
dependence in the wave function through the on-top pair
density.

Fig. 3. Post-SCF potential energy curves of H2 molecule. In a.u.

Fig. 4. Potential energy curves of H2 molecule using the 6-311G**
basis set. In a.u.

9



3.3 Chemical reactivity

Although we have already shown that DFT performs
quite well when dealing with properties of molecules
near their equilibrium geometries, we now face a much
more demanding problem, which is also of primary
importance in chemistry; namely, the determination of
reaction energies and activation barriers of chemical
reactions.

3.3.1 Reaction energies

Apart from their interest as prototype reactions of
interstellar chemistry, the following reactions are of
particular interest to analyze the applicability of corre-
lation energy functionals to chemical reactivity because
the changes in the ionicity of the species represent a good
test for them.

Oþð4SÞ þH2ð1Rþg Þ �! OH�ð3R�Þ þHð2SÞ ð58Þ

OHþð1R�Þ �! Oð3PÞ þHþ ð59Þ

OHþð1R�Þ �! Oþð4SÞ þHð2SÞ : ð60Þ
The results from Ref. [48] are listed in Table 5 for the

spectroscopic constants of the OHþ(3R) molecule, the
reaction energies for the reactions in Eqs. (58), (59) and
(60) yielded by DFT and CF functionals, together with
the experimental results and the results from multi-ref-
erence CI perturbation theory to second order (MRCI-
MP2) calculations [49].

Regarding the functionals analyzed, we focus on P86
[30] and Becke (B88) [50] density functionals, as well as
on MSF [15] and MPJ [14]. Results employing both a
ROHF wave function and a GVB-PP one are shown.
The calculations labeled P86m and B88m were done
including a dependence on q2ðrÞ through Eqs. (54) and
(55). Also included are results from KS calculations [51]
performed with Becke’s exchange [52], together with ei-
ther P86 (B-P86) [30] or LYP correlation energy func-

tionals [4] (B-LYP), as well as with different proportions
of HF exchange (B3-LYP [53]). All the values listed were
obtained with the ANO-TZ basis set [26, 27].

The results indicate that inclusion of dynamic corre-
lation by means of correlation energy functionals largely
improves the results achieved by ROHF or GVB wave
functions. When both dynamic and nondynamic con-
tributions to the correlation energy are considered, the
values of DE for Eq. (58) improve to a great extent.
Regarding this, the improvement observed in P86 and
B88 functionals is due to a lowering of DE, while for
MSF and MPJ functionals the improvement comes from
an increase of DE. KS calculations overestimate DE
mainly because of Becke’s exchange. Both MSF and
MPJ functionals provide the best values. Actually, the
MSF(GVB) calculation yields DE ¼ �0:41 eV, with a
relative error of �8.7% while the much more compu-
tationally demanding MRCI-MP2 calculations using as
many as 1,512,109 configurations provides a large error
of �33.3%.

3.3.2 Energy barriers

The automerization reaction of cyclobutadiene consists
in the inter-conversion between two rectangular struc-
tures of D2h symmetry through a square transition state
of D4h symmetry. Cyclobutadiene is an antiaromatic
molecule and is exceedingly unstable, which makes it
difficult to study experimentally. For this reason, much
attention has been devoted to both the geometry of the
molecule and the automerization mechanism by exper-
imental [54] as well as by theoretical chemists [55, 56,
57]. From the theoretical point of view, this automer-
ization reaction has difficulties rooted in the strong
differences between the electronic structures of the
rectangular and the square geometries. The ground state
of cyclobutadiene is a singlet that can be conveniently
represented by a single Slater determinant. On the other
hand, the highest occupied level in the square geometry
corresponds to two degenerate pðegÞ orbitals housing
two electrons. This implies that at least two Slater
determinants are needed to qualitatively describe the
square geometry of the transition state. The different
character of the electronic structures of the D2h and D4h
conformations requires well-balanced calculations to
account for the automerization process. This can be
achieved by multi reference calculations with a large
excitation window. In this sense, multi reference coupled
cluster (MR-CC) calculations have demonstrated their
adequacy to handle this problem [56, 57]. Here we
address it by means of post-SCF calculations performed
with a wide range of DFT and CF correlation function-
als, comparing their estimations for the automerization
barrier with those provided by a very elaborate MR-CC
calculation.

The automerization energy barriers obtained with the
aforementioned correlation energy functionals and two
types of wave functions are listed in Table 6: HF for a
single-reference and GVB-PP for a two-reference wave
function, respectively [46, 58]; the DFT was modified
according to Eqs. (54) and (55) whenever the GVB-PP
wave function was used.

Table 5. Molecular properties of OH+

Method Re (au) De (eV)
a De (eV)

b DE (eV)c

HF 1.900 3.54 5.16 0.10
P86 1.883 5.04 5.18 )0.12
B88 1.885 4.72 5.22 )0.10
MSF 1.888 5.14 5.16 )0.58
MPJ 1.883 5.26 5.18 )0.68
GVB 1.937 4.12 5.77 0.02
P86m 1.913 5.49 5.67 )0.23
B88m 1.913 5.11 5.62 )0.22
MSF 1.918 5.18 5.23 )0.41
MPJ 1.915 5.30 5.24 )0.50
BLYP 1.982 5.66 5.10 )1.03
BP86 1.977 5.83 5.20 )0.97
B3LYP 1.958 5.66 5.11 )0.88
Reference [49] 1.942 4.99 5.16 )0.30
Experimentd 1.944 5.21 5.20 )0.45 � 0.002

a Dissociation energy of Eq. (60): OH+ ! O+ + H
b Dissociation energy of Eq. (59): OH+ ! O + H+

c Energy change in reaction of Eq. (58): O+ + H2 ! OH) + H
d The result for DE is from Ref. [77], the rest are from Ref. [78]
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Two set of values, corresponding to a single-deter-
minant and a two-determinant wave function, respec-
tively, are reported. While the former is 5 times larger
than the reference barrier, the latter is almost double it.
This reveals the need of including the many-determinant
character of the D4h conformer, accounting for the cor-
rect description of the nondynamic correlation. How-
ever, if the D2h conformer is described by a GVB-PP
wave function, part of the residual dynamic correlation
contribution is already being considered, since the non-
dynamical component is almost absent in this con-
former. For this reason, the values of columns 1 and 2
that correspond to GVB calculations should be consid-
ered as an upper bound for the exact values. In columns
4 and 5 of Table 6 we show the automerization energy
barriers calculated as

DE ¼ ED4hðGVBÞ � ED2hðHFÞ : ð61Þ
Although small differences can be seen from functional
to functional, these values are very close to the exact
ones. The last column shows the effect to take the basis
set limit by extrapolating to a cc-pV1Z base, following
the scheme proposed in Ref. [59]. The results achieved in
this example show again that the adequate use of
methods employing correlation energy functionals is
able to give as accurate values as those that use much
more elaborate and computationally demanding ones.

3.4 Excited states

The development of correlation energy functionals in the
framework of DFT presents serious conceptual difficul-
ties that have not yet been solved. The Hohenberg–
Kohn (HK) theorem, which supports DFT, is a ground-
state theorem and does not guarantee the existence of a
universal variational density functional for the energy of
the rest of the electronic states. Moreover, it is widely
accepted that if such a functional exists, it would be
dependent, not only on the density of the corresponding

excited state, but it should also include a dependence on
the density of the ground state [60,61]. Although there
are interesting works about DFT on excited states [21,
60, 61, 62, 63, 64, 65, 66], the limitations mentioned
earlier, as well as the relatively short trajectory of DFT
in quantum chemistry, explain the scarce use of energy
functionals (in particular, correlation energy function-
als) when calculating the properties of excited states of
atoms and molecules.

Correlation energy functionals derived from the CF
approach do not depend on any restrictive hypothesis
regarding the nature of the electronic state and can be
applied without limitation to calculate the correlation
energy of any electronic state.

In Ref. [24] the correlation energies for several states
for some atoms of the first row in a post-SCF procedure
were calculated. The complete-active-space (CAS)–
MCSCF and the HF (for the lowest state of each mul-
tiplicity) wave functions were employed. The correlation
density functional modified to take into account the
explicit dependence on q2ðrÞ through Eq. (55) was used
with the CAS–MCSCF wave functions.

The results are shown in Tables 7 and 8. An error due
to the basis set incompleteness can be implicit in some
excitation energies of these tables mainly due to the
importance of the diffuse basis functions. For instance,
addition of a p function with an exponent of 0.008
lowers the energy of the 3P and 1P states of He by 5.5
and 8.5 mhartree, respectively.

The HF excitation energies as well as those obtained
from the former by adding the correlation energy from
functionals described earlier in a post-SCF fashion are
listed in Table 7. The HF method provides poor esti-
mates of the excitation energies, which are largely im-
proved when the dynamic correlation energy is included.
As an example, in Table 8 the excitation energies cor-
responding to a wide range of electronic states for the C
atom taken from Ref. [24] are shown. Apart from small
deviations in some specific cases, the results represent
excellent approximations to the exact values. We can
check that inclusion of a MC wave function improves

Table 6. Automerization barrier (kcal/mol) of cyclobutadiene

Method DEa DEb DEc DEd DEe

HF 30.2 29.8
LYP 29.7 29.4
P86 29.3 29.1
MSF 30.0 29.8
MPJ 30.0 29.7
GVB 11.0 11.5
P86m 11.1 11.7 5.0 5.7 5.7
B88m 11.9 12.3 6.9 7.6 7.5
CS 5.3 6.0 6.1
MSF 12.8 13.0 7.7 8.4 8.4
MPJ 12.9 13.4 8.0 8.7 8.6
BLYP 25.4 22.6
B3LYP 25.3 25.3

Reference 6.4 7.0 6.4 7.0 7.4

a Using the cc-PVDZ basis set
b Using the cc-PVTZ basis set
c Using the cc-PVDZ basis set and Eq. (61)
d Using the cc-PVTZ basis set and Eq. (61)
e Using correlation energies extrapolated to the basis set limit

Table 7. UHF + correlation excitation energies, (eV) for the
lowest state of each multiplicity, and the average of the absolute
error, hjeji

UHF VWN-Sic B88 CS MSF MPJ Exp.

Helium
3S  1S 18.711 20.304 19.733 19.842 19.793 19.855 19.83

Beryllium
3P0  1S 1.618 2.540 2.260 2.287 2.421 2.326 2.73

Boron
4P  2P 2.081 3.562 3.162 2.975 3.471 3.432 3.58

Carbon
1D  3P 2.280 1.769 1.951 1.874 1.685 1.687 1.26
5S  3P 2.435 4.469 4.022 3.539 4.403 4.477 4.19

Nitrogen
2D  4S 3.723 2.979 3.307 3.204 2.816 2.800 2.39

Oxygen
1D0  3P 3.295 2.777 2.995 2.933 2.640 2.627 1.97
hjeji 1.31 0.41 0.54 0.59 0.31 0.34
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noticeably the results obtained with a HF plus correla-
tion calculation.

Therefore, the combination of a MCSCF calculation
with a density functional modified by Eq. (55) or a CF
functional seems to be a method applicable to both ex-
cited and ground states. This finding is of particular
interest for DFT functionals, because it suggests that
these functionals which, according to the HK theorem
have been designed to study ground states, are also
applicable to excited states.

4 SCF calculations for atoms and diatomic molecules

In Refs. [67,68] extensive self-consistent calculations by
using a KS-type scheme including both the exact
exchange potential and a correlation potential obtained
as the functional derivative of the MPJ functionals were
made. The ground states of atoms and small molecules
incorporating these correlation potentials were calcu-
lated using two types of wave functions: either a single
Slater determinant or a GVB-PP wave function. The

latter is needed for the correct description of the whole
PEC of the molecules studied.

4.1 Atomic properties

Some of the results for several atomic properties
obtained from ROHF calculations are shown in Table 9.
The IP and EA were calculated by using Eqs. (45) and
(46), while the atomic polarizabilities refer to the average
polarizability or isotropic term of the polarizability
tensor [67]:

�aa ¼ 1

3
ð2axx þ ayyÞ ; ð62Þ

where

aij ¼
dli

dFj

� �

F¼0
; ð63Þ

while li is the permanent dipole moment and F is the
intensity of the applied electric field.

Table 8. Excitation and split-
ting energies (eV) for the carbon
atom with MCSCF + correla-
tion energies, and the average of
the absolute error hjeji

Transition MCSCF VWN-Sic B88 VWNm B88m CS MSF MPJ Exp.

1D0  g3P 1.574 1.082 1.179 1.166 1.373 1.228 0.988 0.994 1.26
1S  g3P 2.602 2.132 2.153 1.966 1.989 1.933 1.393 1.424 2.69
5S  g3P 2.905 4.942 4.497 4.775 4.333 3.865 4.683 4.758 4.19
3D  g3P 8.480 8.630 8.555 8.669 8.661 8.392 8.458 8.478 7.95
3P  g3P 10.021 10.242 10.163 9.817 9.733 9.594 9.406 9.440 8.96
1D  g3P 14.595 14.178 14.083 14.045 13.944 13.572 13.389 13.412 12.14
3S  g3P 15.344 15.373 15.182 14.838 14.825 14.535 14.613 14.626 13.13
1P  g3P 16.060 15.662 15.577 15.498 15.414 14.779 14.410 14.445 14.87

3D  5S 5.574 3.688 4.058 3.894 4.328 4.526 3.775 3.721 3.76
3P  5S 7.116 5.300 5.666 5.042 5.400 5.729 4.723 4.682 5.15
1D  5S 11.690 9.236 9.586 9.270 9.610 9.707 8.707 8.654 7.98
3S  5S 12.438 10.431 10.685 10.063 10.492 10.670 9.931 9.868 8.93
1P  5S 13.155 10.720 11.080 10.723 11.081 10.914 9.727 9.688 10.68

hjeji 1.75 0.90 0.93 0.77 0.85 0.78 0.72 0.72

Table 9. First IP, EA and po-
larizabilities, a, of He–Ar atoms,
using a SCF procedure

IP EA a

Exact ROHF MPJ Exact ROHF MPJ Exact ROHF MPJ

2 24.59 23.46 24.60 – < 0 < 0 0.21 0.19 0.19
3 5.39 5.34 5.66 0.62 )0.13 0.42 24.30 25.08 24.61
4 9.32 8.04 8.96 – < 0 < 0 5.60 6.77 6.57
5 8.30 7.93 8.50 0.28 )0.27 0.05 3.03 3.26 3.07
6 11.26 10.79 11.31 1.27 0.55 0.88 1.76 1.78 1.67
7 14.53 13.97 14.43 – < 0 < 0 1.10 1.08 1.02
8 13.62 11.98 13.68 1.47 )0.54 0.76 0.80 0.70 0.67
9 17.42 15.71 17.27 3.41 1.31 2.52 0.56 0.48 0.46
10 21.56 19.87 21.28 – < 0 < 0 0.40 0.32 0.32
11 5.14 4.95 5.22 0.55 )0.12 0.48 23.60 28.12 26.53
12 7.65 6.61 7.53 – < 0 < 0 10.60 12.06 11.48
13 5.99 5.50 5.99 0.45 0.04 0.32 8.34 9.27 8.65
14 8.15 7.66 8.11 1.40 0.96 1.26 5.38 5.71 5.44
15 10.49 10.18 10.46 0.76 )0.46 0.77 3.63 3.76 3.62
16 10.36 9.09 10.62 2.09 0.90 2.07 2.90 2.83 2.70
17 12.97 11.79 13.20 3.64 2.53 3.63 2.18 2.10 2.02
18 15.76 14.74 16.05 – < 0 < 0 1.64 1.59 1.54
� 7.27 1.50 108.10 24.81 9.1 8.2
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In a previous section we discussed the effect of the
basis set quality on the IP and EA results calculated in a
post-SCF fashion. The calculation of the atomic polar-
izabilities requires large basis sets with inclusion of dif-
fuse functions. The ANO-TZ basis set [26,27] is
adequate for this purpose.

The SCF IP and EA from Table 9 are very similar to
those of Tables 1 and 2 from post-SCF calculations. The
differences between the mean relative errors of both sets
are only of 0.18 and 6.33, respectively, favoring slightly
the SCF results. Both sets of values improve markedly
on the HF ones. The values of the polarizabilities of
Table 9 are slightly better than those from ROHF cal-
culations, being the highest improvements for the atoms
of the second row.

4.2 Molecular properties

4.2.1 One-determinant calculations

Regarding the SCF results for small molecules we list in
Table 10 the dissociation energies, vibrational frequen-
cies, equilibrium distances and dipole moments calcu-
lated using a single Slater determinant to approximate
the wave function of homonuclear and heteronuclear
diatomic molecules [68]. The use of just one Slater
determinant does not allow an adequate description of
the PEC at dissociation distances. For this reason, the
dissociation energies were calculated as the difference
between the energy of the molecule at equilibrium
distance and the sum of the energies of the isolated
atoms.

These results reaffirm the conclusions drawn from the
atomic SCF calculations, namely:

– The equilibrium distances, vibrational frequencies
and dipole moments are slightly improved when the
correlation energy is taken into account (the MPJ
functional gives the best values).

– The dissociation energies are largely improved when
the correlation energy is considered. For example, the
MPJ functional gives an average relative error of
15.9% versus 59.4% for the HF calculation.

The atomization energies of four polyatomic molecules
taken from Ref. [68] are shown in Table 11. The large
improvement of the correlated SCF results with respect
to the HF method is immediately apparent, with the best
results achieved by the MPJ functional. We note in
passing that the atomization energy for the ozone
molecule is poorly described, because the ground state
of C2v symmetry has a large portion of birradical
character. Therefore, at least two Slater determinants
are needed for a correct description of the molecule.

4.2.2 Many-determinant calculations

We end this section by stressing the influence of the
many-determinant character of the wave function in the
SCF determination of PECs, and by analyzing the effect
of including or not the correlation contribution to a
many-determinant SCF procedure. We start the discus-
sion by noting that, in general, more than one Slater
determinant is needed for the correct determination of
the PEC at all distances in diatomic molecules. To
simplify things, we will only focus on molecules where

Table 10. Molecular properties from correlated SCF calculations. (Re in atomic units, De in electron volts, xe in reciporcal centimeters and
jlj in debyes)

H2 Li2 B2 C2 N2 O2 F2 LiH BeH HB HF HCl e

Exact
Re

a 1.401 5.051 3.003 2.347 2.073 2.282 2.679 3.015 2.538 2.336 1.733 2.409
De

a 4.75 1.14 3.00 6.36 9.91 5.21 1.66 2.52 2.20 3.58 6.12 4.62
xe

a 4400 351 1051 1855 2358 1580 892 1406 2061 2368 4139 2991
jljb 5.83 0.17 1.27 1.82 1.08
ROHF
Re 1.390 5.263 3.098 2.351 2.022 2.176 2.516 3.037 2.535 2.314 1.693 2.399 2.2
De 3.62 0.17 0.86 0.65 4.96 1.10 )1.49 1.47 2.16 2.74 4.18 3.41 59.4
xe 4594 337 944 1911 2740 2030 1212 1431 2136 2476 4513 3148 10.5
jlj 6.03 0.29 1.72 1.98 1.45 30.4
ROHF-VWN
Re 1.363 5.107 3.041 2.321 2.005 2.154 2.483 2.969 2.492 2.271 1.676 2.371 2.8
De 6.21 0.93 1.15 2.04 7.34 2.25 )0.89 3.30 3.30 4.38 5.95 5.02 44.1
xe 4773 368 1006 1985 2804 2093 1263 1507 2218 2599 4637 3251 13.6
jlj 6.01 0.29 1.77 1.99 1.43 31.0
ROHF-LYP
Re 1.379 5.100 3.042 2.324 2.008 2.156 2.479 2.976 2.503 2.284 1.682 2.380 2.5
De 4.66 0.89 1.32 2.32 7.65 2.66 )0.57 2.43 2.51 3.60 5.30 4.37 32.3
xe 4672 364 1006 1986 2797 2093 1277 1497 2192 2562 4597 3222 12.9
jlj 5.93 0.28 1.76 1.99 1.47 30.0
ROHF-MPJ
Re 1.377 5.156 3.054 2.328 2.012 2.163 2.493 2.989 2.502 2.281 1.682 2.375 2.1
De 4.57 1.44 2.17 3.62 9.50 4.32 1.39 2.61 2.80 3.92 5.59 4.76 15.9
xe 4689 357 993 1976 2788 2076 1253 1485 2200 2578 4604 3246 12.6
jlj 6.02 0.27 1.76 1.98 1.43 28.4

a The exact values are taken from Refs. [79, 80], except for HCl [81]
b The exact values are taken from Ref. [82], except for the CEPA values of HBe [83]
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two determinants are sufficient to obtain a correct
description at any distance. In this case the minimization
of the energy is done through an iterative procedure
where each step consists of two phases: in the first one
we optimize the molecular orbitals while keeping fixed
the amplitudes of each determinant entering the wave
function; in the second one we optimize the previously
mentioned amplitudes without changing the molecular
orbitals. Although a more elaborate description of the
procedure may be found in Ref. [22], we give here a brief
outline:

– In a first step the following three sets of differential
equations are solved:

H ef
c wi ¼ �iwi ; ð64Þ

H ef
b wb ¼ �bwb ; ð65Þ

H ef
a wa ¼ �awa ; ð66Þ

where H ef
c , H ef

b and H ef
a represent the effective one-

electron operators of the core shell, the bonding and
the antibonding orbital, respectively, while i runs
through the number of orbitals of the core shell. Each
of these operators is built by adding the correspond-
ing correlation potential to the ‘‘noncorrelated’’
operator.1 The way this correlation potential is
obtained is described in Ref. [22].

– In the second phase the probability amplitude of each
Slater determinant entering the MC wave function is
optimized, as in a CI calculation.

The results obtained from MCSCF calculations with
and without correlation included are shown in Table 12.
We only report on the MPJ functional because it is the
one that yields the best results. The behavior of the PECs
and spectroscopic properties upon the inclusion of cor-
relation energy functionals was discussed in Sect. 3, and
the main conclusions apply equally well here. Namely,
the inclusion of the correlation functionals in the MC
calculation

– Decreases the GVB equilibrium distances, improving
its values. Note that the same lowering occurs when
adding the correlation functional to HF.

– Increases the vibrational frequencies, which also
improves the results.

– Increases the dissociation energy of the GVB case,
largely improving the values.

The differences found between SCF and post-SCF
calculations on the many-determinant scheme are also
very little, although the values improve slightly when
going from the post-SCF to the SCF calculations. For
example, the vibrational frequencies are modified by the
order of several reciprocal centimeters (LiH has the
higher difference of 30 cm�1).

5 Size-consistency

Size-consistency is an important property in molecular
calculations. We say that a computational method is
size-consistent if the energy of the compound system AB
tends to the energy of the component subsystems A and
B at infinite separation,

lim
RAB!1

EAB ¼ EA þ EB : ð67Þ

Size-consistency is part of the more general concept
size-extensivity. A computational method is size-exten-
sive if the calculation of the energy properties of a sys-
tem composed of several noninteracting subsystems
gives the sum of the properties for every isolated sub-
system,

EðS1 þ S2 þ � � � þ SmÞ ¼ EðS1Þ þ EðS2Þ þ � � � þ EðSmÞ :
ð68Þ

Some of the more common quantum chemistry
methods do not satisfy these properties of size-exten-
sivity or size-consistency. For example, the truncated CI
methods are not size-extensive. This fact can be proved
by the analysis of the excitations using a diagrammatic
technique. The CI method is size-extensive only when it
satisfy Wick’s sum where all the unlinked diagrams are
adequately compensated.

Some simple theoretical methods are size-consistent,
(the HF method and the GVB-PP method are two
examples of these methods). Most of the correlation
energy functionals are size-consistent. When a correla-
tion energy functional is applied together with a
size-consistent wave function (in post-SCF or SCF) the
results of this calculation are size-consistent. The
conventional DFT correlation energy functionals are

Table 11. Atomization energies (kcal mol�1) using correlated SCF
calculations

H2O NH3 H2O2 O3

HF 155.1 198.4 138.3 ) 8.9
HF-VWN 237.4 323.4 238.4 1.6
HF-LYP 207.1 277.6 215.0 17.8
HF-MPJ 221.9 300.7 273.5 111.9
Exp. 234.5 300.9 271.9 148.8

Table 12. Equilibrium distances (au), vibrational frequencies
(cm)1) and dissociation energies (eV) for some diatomic molecules

H2 F2 LiH HF

GVB
Re 1.426 2.777 3.088 1.729
De 4.14 0.72 1.93 4.98
xe 4226 691 1300 4132
GVB + MPJ
Re 1.400 2.690 3.011 1.706
De 4.93 1.15 2.70 6.00
xe 4429 817 1384 4331
GVB-MPJ(SCF)
Re 1.400 2.690 3.011 1.707
De 4.93 1.15 2.73 6.02
xe 4422 823 1414 4327

1With the word noncorrelated we mean that the contribution of the
correlation energy functional is absent.

14



size-consistent because they do not depend on the
number of electrons of the system. The CS functional is
also size-consistent. However MSF and MPJ functionals
depend explicitly on the number of electrons of the
system and are not size-consistent, although the exact
functional of DFT must be so, because according to
Lieb [69] it depends on N .

Recently, a method was proposed to solve the prob-
lem of size-consistency for the MSF and MPJ func-
tionals [23]. In this method the number of electrons N of
the system is replaced by an effective number of electrons
~NNðrÞ. The number of electrons of a neutral system sat-
isfies the following equation:

N ¼
XM

i¼1
Zi ; ð69Þ

where Zi is the atomic number of atom i and M is the
number of atoms of the system.

The Zi are replaced by an effective number that de-
pends on the distance of the point where we are calcu-
lating the effective number of electrons (r) and the
position of the nucleus (Ri). The expression for this
function proposed in Ref. [23] is

~NNðrÞ ¼
XM

i¼1
Zi exp �

r� Ri

a

2� �� �
; ð70Þ

where a is an adjustable parameter. This effective
number of electrons satisfies

lim
a!1

~NNðrÞ ¼ N : ð71Þ

So the effective number of electrons tends toward the
total number of electrons in the limit of large screening
radius.

This definition of the effective number of electrons is
not the only one possible; however, it gives very good
results on the tests where it was applied. For example,
the correlation energy for the Be dimer at internuclear
distance of 20 Å with a 6-311G** basis set is �0.230 au
for the MPJ functional. The sum of the correlation en-
ergy of two Be atoms with the MPJ functional is
�0.189 au, showing the importance of the size-consis-
tency. When we introduced the effective number of
electrons the same calculations give �0.189 hartree for
the molecule at 20 Å and for the two isolated atoms, so
the size-consistency problem has been solved.

The PEC of the fluorine molecule is shown in Fig. 5
using a GVB-PP wave function together the CS, the
MPJ, and the MPJ corrected by the effective number of
electron functionals. The PEC shows that the inclusion
of Eq.(70) has solved satisfactorily the lack of size-con-
sistency of the original MPJ functional.

6 Concluding remarks

An overview on two-body functionals for the correlation
energy, obtained within the CF approach has been
made. Its applications to atomic, molecular properties as
well chemical reactivity have been discussed and

compared with the results of a wide variety of correla-
tion energy functionals from DFT.

Properties such as IP, EA and polarizabilities of
atoms, equilibrium bond lengths, vibrational frequen-
cies, dissociation energies, and the slope of the PEC of
diatomic molecules were analyzed. Two kinds of chem-
ical reactions were considered: a set of reactions imply-
ing changes in the ionicity of the reactants and a typical
organic isomerization reaction in which the evolution of
p bonds is the key point; in both kinds of reactions the
electron correlation plays an important role but in a very
different fashion.

The conclusions are basically the same for all the
properties discussed. If the one-Slater-determinant wave
function is adequate for a qualitatively correct picture of
the system under study, both sets of functionals, GGA
DFT and CF, are good tools to include the correlation
energy, providing very satisfactory results (the CF ones
giving slightly better results). When a many-determinant
wave function is needed for an acceptable picture of the
electron cloud, the correlation energy functionals per-
taining to the CF class maintain their good perfor-
mances, but the DFT class does not. Anyway, if the spin
components of the density are modified, in the sense that
they depend now on the two-body density matrix
through the on-top two-body density, the DFT func-
tionals work adequately without modifying their original
expressions.

Unfortunately, dynamic and nondynamic (short-
range and long-range) correlation energy components
are somewhat artificial concepts and are not completely
separable.Therefore, the results of applying correlation
energy functionals must show, to some extent, a double
count of the correlation energy. This fact appears in
both sets of functionals analyzed but to a much more
extent in the DFT ones. CF functionals show an
acceptable accommodation to the wave function,
reducing in a reasonable fashion the amount of corre-
lation energy which they provide when the quality of the
wave function increases. Other attempts have been made
to solve this double count of the correlation energy [70,

Fig. 5. Post-SCF potential energy curves of F2 molecule. In a.u.
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71, 72, 73, 74, 75]; however, a definitive solution has not
yet been reached and remains a difficult task to be done
in the future.

CF and DFT correlation energy functionals were
applied, in a post-SCF scheme, to the calculation of
excited-state energies of atoms. There are not conceptual
restrictions to apply the CF functionals to excited-state
calculations, but DFT functionals are related to the HK
theorem, which applies only to the ground-state energy
of each symmetry. There are no significant differences
between the results of both sets of functionals, (DFT and
CF), both being very good.

Self-consistent calculations, using an effective Ham-
iltonian with the correlation energy potential obtained as
the functional derivative of a correlation energy func-
tional, provide slightly better results than those obtained
in post-SCF calculations. Nevertheless, the differences
are so small that in many cases the effort required in the
SCF calculation would not be justified compared to the
post-SCF results.

In the KS hypothesis there is an auxiliary system
described by one Slater determinant that provides the
density of the exact system. Once the exact density is
obtained the calculation of the energy follows from
placing it into the energy density functional. However,
the one-determinant KS calculations show the same
behavior as the HF ones. When a departure from the
one determinant solves the deficiencies of the HF model,
the same wave function suffices for good results by using
any of the correlation DFT functionals, without
changing their expressions, only by using Eqs. (54) and
(55). This fact indicates that the one-determinant
hypothesis is a restriction to be removed from KS the-
ory. Moreover, it must be stressed that for a KS theory
workable in any circumstances, the on-top density is
needed and not only the exact density. This is a very
interesting fact pointed out in the literature [44, 45, 76]
which deserves further and deeper analysis.

The MSF and MPJ functionals were obtained by
using a Gaussian sum to approximate the angle-aver-
aged two-body density; this fact, together with the use of
the hierarchy between the two-body and one-body
densities as a constraint, leads to an energy functional
having a particular dependence on the number of elec-
trons. An important consequence for these functionals is
that they are not size-extensive. We have shown that this
limitation can be removed in an approximate and sat-
isfactory way by introducing the intensive modified
electron number.
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45: 4407
41. Pople JA (1977) In: Schaefer HF III (ed) Applications of

electronic structure theory, Vol. 4. Plenum, New York pp 1–27
42. San-Fabián E et al (1992) J Mol Struct (THEOCHEM) 254: 1
43. Kolos W, Wolniewicz L (1965) J Chem Phys 43: 2429
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